The following 380 words could not be found in the dictionary of 615 words (including 615 LocalSpellingWords) and are highlighted below:

100n   10k   15k   22k   22n   22u   330k   47k   4k7   A3046   ability   about   accurate   across   active   acts   add   additional   adjusted   adopted   against   all   alternative   Although   amplifier   amplifiers   an   analogue   and   appears   application   applied   approach   arrangement   array   at   attachment   attenuation   available   avoid   back   based   basis   be   been   between   bias   biased   board   Book   but   by   C0s   C1   C1a   C1b   C2   C2a   C2b   C3   C5   C559   Capacitors   case   cases   ceramic   certain   changes   Chapter   Chapter2   Chapter3   characteristic   circuit   Cl   common   compensation   complicate   components   Components   configurations   connected   connections   consequently   consider   consists   contact   control   controlled   controls   conventional   conversion   Converter   converter   correct   current   currents   degree   described   description   design   Designing   despite   detailed   devices   diagram   difficult   digital   diode   diodes   directly   divider   does   doubled   drift   drive   dual   each   easier   electrolytic   electronic   eliminate   emitters   enables   ensures   etc   exceed   excellent   excessive   expense   exponentially   fact   far   feature   fed   Fig   Fig06   Fig07   Figure   flow   for   form   forward   frequency   frequent   from   Fs   give   gives   glued   Having   having   horizontal   identical   impossible   in   In   include   included   inclusion   increment   increments   individual   individually   input   instant   integrator   Integrator   intro   involved   its   jpg   just   justified   keyboard   large   later   law   least   limiting   limits   Lin   linear   lk   Log   logarithmic   long   M13600   M13700   made   maintained   make   makes   merely   might   Miller   miniature   Miscellaneous   modest   modulator   module   more   most   much   music   must   N4148   necessary   need   needed   no   Nor   normal   note   obtain   octave   octaves   of   often   on   one   only   operate   operated   operates   operating   operation   or   order   ordinary   Os   oscillator   other   others   output   over   pair   Penfold   per   pin   pitch   plays   plus   point   polyester   potential   Potentiometers   practice   precision   preset   Printed   probably   proportional   proposition   protect   provide   provided   provides   R1   R2   R3   R4   R6   R7   R9   radial   raised   range   rather   readily   readjustment   really   reasonably   relies   remains   require   required   resistance   resistor   resistors   Resistors   result   results   rises   Rl   role   roughly   S1   Schmitt   seem   seems   Semiconductors   sensors   series   setting   shifted   significantly   silicon   similar   simple   so   solution   sort   square   stable   steps   suit   suitable   switch   synthesizer   tailed   task   temperature   than   that   The   the   their   them   then   there   therefore   thermal   these   things   this   This   three   through   to   together   toggle   too   transconductance   transistor   transistors   triangular   tried   Trigger   trigger   true   tune   tuning   two   type   types   up   use   used   useful   using   V1   V2   varies   variety   very   virtually   volt   voltage   voltages   volts   watt   wave   waveform   we   well   what   What   where   whereas   which   While   while   will   wire   With   with   without   words   work   would  

Clear message


Chapter 2: VCO


The basis of any analogue synthesizer is its VCO (or VCOs), and this is the module that we will consider first. The circuit diagram of the VCO appears in Figure 6.

IC1 is an LM13600N dual transconductance amplifier (or the virtually identical LM13700N), and devices of this type are much used in electronic music. What makes transconductance amplifiers so useful is their ability to operate as a sort of voltage controlled resistance, a feature which makes them suitable for use in VC0s, VCAs, VCFs, and certain types of modulator circuit. In this case the two amplifiers are connected in an arrangement that is similar to a conventional triangular-square wave oscillator using a Miller Integrator and a Schmitt Trigger. IC1a operates as the integrator while IC1b is the trigger circuit. The triangular waveform is available, from IC1a and IC1b provides the square wave output.

Although this circuit has been described as a VCO, this is not really a very accurate description in that transconductance amplifiers' are current rather than voltage operated. It is therefore the control current fed to the amplifier bias input (pin 1) which controls the operating. frequency, and not the voltage applied here. In order to obtain voltage operation it is merely necessary to add a resistor in series with the bias input, as the current flow is then roughly proportional to the applied voltage.

This is not a suitable solution in this case as it would result in a 'VCO having a reasonably linear voltage-frequency characteristic, whereas what is needed is a type having a logarithmic control law. In other words, we require a circuit where the pitch is raised in octave steps by control voltages of 1 volt, 2 volts, 3 volts, 4 volts, etc. With a linear control law the control voltage must be doubled in order to provided each octave increment. Designing a VCO which has a logarithmic control law would be a difficult task, and the normal approach is to use a linear VCO fed from a logarithmic to linear converter. While it might seem easier to just design the keyboard circuit to suit a linear VCO and eliminate the need for what is a difficult form of voltage conversion, this is not really the case. The logarithmic law enables a very simple keyboard circuit based on readily available components to be adopted, whereas with a linear characteristic it would probably be impossible to obtain suitable precision resistors. This would make it necessary to tune each note of the keyboard individually. It would also make digital control of the circuit a more difficult proposition.

The circuit diagram of suitable logarithmic to linear converter appears in Figure 7. This is also a voltage to current converter, and the VCO remains a current rather than a true voltage controlled type despite the inclusion of series resistor R2 at its input. R2 is only a current limiting resistor to protect IC1a against an excessive input current, and it plays no active role in the VCO.

This converter circuit, in common with most other types of logarithmic amplifier, relies for its operation on the fact that the current through a forward biased silicon diode rises exponentially with linear increments [it!] the input voltage. Although this characteristic is only maintained over certain limits, in this application there is no need to exceed these limits as only a modest ,range of output currents is involved (no more than a range of about 100 to 1). What does complicate things is that the voltage across a forward biased silicon diode varies significantly with changes in temperature, and diodes are often used as electronic temperature sensors. The circuit must therefore include temperature compensation to avoid the need for very frequent readjustment to correct tuning drift.

Having tried a variety of configurations, this one seems to give reasonably accurate and stable results without the need for any “difficult to obtaincomponents. IC2 is a CA3046 transistor array, which consists of three individual transistors plus two others connected as a long-tailed pair (i.e. having their emitters connected together). In this circuit only two of the individual transistors are used, and no connections are made to the other devices. IC2a operates as the converter, while IC2b provides a degree of temperature compensation. The point of using a transistor array to provide these two devices is that this ensures excellent thermal contact between the two, and consequently gives instant and accurate temperature compensation. The alternative of using two ordinary silicon NPN transistors with their cases glued together seems to work reasonably well, but the additional expense of using a transistor array is probably justified.

The input voltage range is far too large to directly drive IC2a, and a potential divider to provide a suitable degree of attenuation is therefore included at the input of the circuit. RV1 is adjusted to give the required 1 volt per octave characteristic. RV2 is the frequency control, and this enables the output current of the circuit to be adjusted. In practice this acts as the tuning control, and it is adjusted to give the required pitch range from the VCO. It provides a large control range, and enables the pitch range to be shifted over at least three octaves. A more detailed description of setting up RV1 and RV2 will be provided later.

VCO Components (Fig. 6)

Resistors (all 1/4 watt 5%)
Rl lk
R2 10k
R3,5 4k7
R4 15k

Cl,3 100nF ceramic
C2,4 22uF 25V radial electrolytic
C5 22nF miniature polyester

IC1 LM13600NorLM13700N

S1 SPDT miniature toggle switch
Printed circuit board, wire, etc.

Log-Lin Converter Components (Fig. 7)

Resistors (all 1/4 watt 5%)
R6 47k
R7 lk
RS 10M
R9 330k

RV1 22k miniature horizontal preset
RV2 47k miniature horizontal preset

IC2 CA3046
1C3 741C
TR1 BC559
DI 1N4148 

PenfoldBookChapter2/Vco (last edited 2007-02-12 10:18:02 by TomArnold)